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Photorespiration in eelgrass
(Zostera marina L.): A
photoprotection mechanism for
survival in a CO2-limited world

Billur Celebi-Ergin *† , Richard C. Zimmerman
and Victoria J. Hill

Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, United States
Photorespiration, commonly viewed as a loss in photosynthetic productivity of

C3 plants, is expected to decline with increasing atmospheric CO2, even

though photorespiration plays an important role in the oxidative stress

responses. This study aimed to quantify the role of photorespiration and

alternative photoprotection mechanisms in Zostera marina L. (eelgrass), a

carbon-limited marine C3 plant, in response to ocean acidification. Plants

were grown in controlled outdoor aquaria at different [CO2]aq ranging from ~55

(ambient) to ~2121 mM for 13 months and compared for differences in leaf

photochemistry by simultaneous measurements of O2 flux and variable

fluorescence. At ambient [CO2], photosynthesis was carbon limited and the

excess photon absorption was diverted both to photorespiration and non-

photochemical quenching (NPQ). The dynamic range of NPQ regulation in

ambient grown plants, in response to instantaneous changes in [CO2]aq,

suggested considerable tolerance for fluctuating environmental conditions.

However, 60 to 80% of maximum photosynthetic capacity of ambient plants

was diverted to photorespiration resulting in limited carbon fixation. The

photosynthesis to respiration ratio (PE : RD) of ambient grown plants

increased 6-fold when measured under high CO2 because photorespiration

was virtually suppressed. Plants acclimated to high CO2 maintained 4-fold

higher PE : RD than ambient grown plants as a result of a 60% reduction in

photorespiration. The O2 production efficiency per unit chlorophyll was not

affected by the CO2 environment in which the plants were grown. Yet, CO2

enrichment decreased the light level to initiate NPQ activity and

downregulated the biomass specific pigment content by 50% and area

specific pigment content by 30%. Thus, phenotypic acclimation to ocean

carbonation in eelgrass, indicating the coupling between the regulation of

photosynthetic structure and metabolic carbon demands, involved the

downregulation of light harvesting by the photosynthetic apparatus, a

reduction in the role of photorespiration and an increase in the role of NPQ

in photoprotection. The quasi-mechanistic model developed in this study
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permits integration of photosynthetic and morphological acclimation to ocean

carbonation into seagrass productivity models, by adjusting the limits of the

photosynthetic parameters based on substrate avai labi l i ty and

physiological capacity.
KEYWORDS

CO2, non-photochemical quenching, ocean acidification, photorespiration,
photosynthesis, quantum yield, seagrass
Introduction

Photosynthesis and photorespiration are competing

processes due to the bi-functionality of ribulose 1,5-

biphosphate carboxylase/oxygenase (Rubisco) (Spreitzer and

Salvucci, 2002). Since the oxygenation reaction of Rubisco

decreases photosynthetic carbon gain, it has been viewed as an

inefficient legacy of evolution that might be engineered out of

terrestrial plants in a quest for increased productivity (Andrews

and Lorimer, 1978; Somerville, 2001; Xin et al., 2015). Recent

work, however, suggests that Rubisco’s CO2/O2 specificity in

different species may approach optimal acclimation to their

gaseous environment in which the plants are grown (Tcherkez

et al., 2006; Bathellier et al., 2018). More importantly, especially

for carbon-limited seagrasses, photorespiration may serve as an

important metabolic “clutch” to protect the photochemical

pathway at high irradiance (Heber and Krause, 1980; Osmond,

1981; Osmond et al., 1997; Igamberdiev et al., 2001). When the

Calvin Benson cycle is limited by the availability of CO2,

continuation of light reactions over-reduces the thylakoid

electron transport chain and generates O2 and reactive oxygen

species (ROS) that potentiates oxidative stress (Voss et al., 2013).

Photorespiration helps to balance the redox state and minimize

the accumulation of ROS by dissipating the excess reducing

equivalents (NADPH) as well as energy (ATP) (Foyer et al.,

2009). By recycling the photorespired CO2, photorespiration

may also facilitate carbon assimilation in CO2 limited

environments , thereby minimiz ing photosynthet ic

inefficiencies resulting from C-limitation (Busch et al., 2013;

Xin et al., 2015).

Photorespiration is often considered to be of minor

importance in aquatic systems as a result of carbon

concentrating mechanisms (CCMs) that facilitate the transport

of HCO3
- and its dehydration by algal pyrenoids that effectively

deliver CO2 to Rubisco (Frost-Christensen and Sand-Jensen,

1992; Madsen et al., 1993; Meyer et al., 2017). In today’s oceanic

water (pH ~8.2), 89% of the DIC is in form of HCO3
- and only

0.5% exists as dissolved CO2 (Zeebe, 2012). However, not all
02
aquatic C3 plants have similar efficiencies to use both forms of

DIC for photosynthesis (Raven and Beardall, 2003; Raven et al.,

2011; Raven and Beardall, 2014). Additionally, CO2 acquisition

by simple diffusion through the leaf surface is more difficult for

submerged plants due to the 10,000-fold lower diffusion rates of

gases in a liquid environment relative to air (Borum et al., 2006).

Consequently, for aquatic C3 plants such as seagrasses that do

not use CCMs effectively, carbon limitation likely increases the

photorespiratory function of Rubisco (Tolbert and Osmond,

1976; Touchette and Burkholder, 2000).

Seagrasses are flowering marine plants that evolved from

terrestrial monocots in the middle Cretaceous (Larkum et al.,

2006b) when higher atmospheric and oceanic CO2

concentrations likely supported photosynthesis and minimized

photorespiration (Kuypers et al., 1999; Zeebe, 2012). In

colonizing the aquatic habitat, seagrass evolved adaptations to

a submerged environment that produced important anatomical

differences from their terrestrial ancestors (Zimmerman et al.,

1997; Larkum et al., 2006a). Seagrass leaves have no stomatal

openings as gas exchange occurs across both leaf surfaces by

diffusion, which uncouples carbon uptake from water relations.

Seagrasses also have a lacunal system with aerenchyma

extending from the roots to the leaves that facilitates the

transport of O2 to the roots buried in permanently flooded

anoxic sediments, and allows transport of CO2 from the roots to

leaves, providing an alternative carbon source (Madsen and Sand-

Jensen, 1991). Like their terrestrial ancestors, however, seagrass

chloroplasts lack pyrenoids that serve as an important CCM in

most aquatic algae (Meyer et al., 2017) and seagrasses are typically

less efficient in utilizing HCO3
- thanmacroalgae (Beer et al., 1991).

Although Rubisco activity in seagrasses is lower than the typical

activities in freshwater emergent angiosperms and marine red

algae, it is comparable to that observed in marine green and

brown macroalgae (Beer et al., 1991). Simulations of nearshore

seawater DIC distribution during the Cretaceous period have

predicted that photosynthetic rates of seagrasses would have been

similar to macroalgae (Beer and Koch, 1996). However, in today’s

oceans, seagrass photosynthesis is generally considered to be
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carbon limited (Durako, 1993; Beer and Koch, 1996; Zimmerman

et al., 1997; Invers et al., 2001).

Carbon limited photosynthesis also restricts seagrasses to

shallow, high light environments, where low daytime CO2:O2

ratios in the water column may increase seagrass vulnerability to

photorespiration (Buapet et al., 2013b). The photorespiratory

pathway was confirmed in marine plants and macrophytes by

showing that photosynthesis could be inhibited by increasing the

O2 concentration, resulting in higher concentrations of glycolate

pathway intermediates (Hough, 1974; Black et al., 1976; Burris

et al., 1976; Downton et al., 1976; Hough and Wetzel, 1977;

Andrews and Abel, 1979). The decreasing O2 evolution rates

relative to electron transfer rates measured by PAM fluorometry

at high irradiances in Zostera marina and Halophila stipulacea

also suggested a role for photorespiration in these seagrass

species (Beer et al., 1998). More recent studies demonstrated

the influence of oxygen concentrations and temperature on

photorespiration in seagrass that fluctuate in natural

environment because of eutrophication, high community

productivity and elevated ocean temperatures; and therefore,

will play a role in predicting the health status of these plants in

warmer climate scenarios (Buapet and Björk, 2016; Rasmusson

et al., 2020). The plastochron interval, which defines leaf life

span, leaf turnover and elongation rates, plays an important role

in photoacclimation strategies that differ among species at the

chloroplast, leaf and shoot levels (Schubert et al., 2018).

However, we still do not understand how long-term

acclimation to climate warming and ocean acidification/

carbonation will affect photorespiration and photoprotection

in seagrasses (Koch et al., 2013).

Several experiments simulating ocean acidification/

carbonation impacts on time scales of hours to >1 year have

quantified the positive impacts of CO2 availability on carbon

balance, growth, survival and reproductive output in seagrasses

(Zimmerman, 2021). During the most recent of these studies, the

down-regulation of pigment content with increasing CO2

resembled the photoacclimation response to high light

environment that pointed to the importance of metabolic

acclimation regulating the redox state of the chloroplast in

eelgrass (Zimmerman et al., 2017; Celebi-Ergin et al., 2021).

Therefore, the objectives of this study were to estimate the

importance of photorespiration in the marine angiosperm

Zostera marina L. (eelgrass) under today’s oceanic carbon

concentrations and explore the potential acclimation response

to prolonged ocean acidification/carbonation by 1) quantifying

the photochemical rates under different light and CO2

availability by using eelgrass grown in a high light low CO2

environment, i.e., representing the baseline photosynthetic

capacity under today’s oceanic conditions; and 2) comparing

the relative contribution of different photochemical pathways in

eelgrass after 13 months of acclimation to different CO2

environments superimposed open daily and seasonal patterns

of solar radiation, temperature and salinity.
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Materials and methods

Table 1 provides a complete list of all abbreviations,

acronyms, and symbols along with their units used throughout

this paper.

The experimental facility and sampling
from pH treatments

Eelgrass shoots used in this study were grown in an outdoor

aquatic climate research facility at the Virginia Aquarium and

Marine Science Center, VA, USA. The experimental design and

control ofmanipulations for this-long termproject were detailed in

Zimmerman et al. (2017). Briefly, eelgrass plants, harvested inMay

2013 from a subtidal population growing in South Bay, a coastal

lagoon on the Virginia portion of the DelMarVa Peninsula, USA,

were transplanted into 20 fiberglass open top aquaria (3 m3 each)

plumbedwith runningseawater fromOwl’sCreek,VAandexposed

to natural sunlight. Temperature, pH, salinity, and irradiance were

monitored continuously in all aquaria. Beverage-gradeCO2 gaswas

used to enrich the experimental aquaria from June 2013 toOctober

2014usinga systemofpH-controlled solenoidvalves. pHtreatment

levels ranged frompH6 ([CO2(aq)]≅ 2121µM) toambient (noCO2

addition, pH ≅ 7.7, [CO2(aq)] ≅ 55 µM), with 0.5 pH intervals

between the treatments (4 aquaria at each pH). The experimental

CO2 manipulation produced consistently different levels of [CO2

(aq)] and pH among the treatments day and night throughout the

duration of the 13-month experiment. Plant performance was

monitored monthly while environmental parameters, which

varied daily and seasonally, were recorded at 10-minute intervals.

During July 2014, after 13 months of cultivation in the

experimental aquaria, freshly collected 2nd youngest leaves from

pH 6.1 (2121 µMCO2(aq)), pH 6.9 (371 µMCO2(aq)) and ambient

pH 7.7 (55 µM CO2(aq)) treatments were harvested for laboratory

measurements of photochemistry under fully controlled

incubation conditions. Hereafter, the three treatments will be

referred to as GpH6, GpH7 and GpH8, for simplicity. During these

measurements, the daily seawater temperature in aquaria ranged

from 25 to 28°C; allowing all the incubation measurements

described here to be conducted at the optimal temperature of 25°

C without inducing heat stress. The daily total surface irradiance

ranged from 10 to 29 mol photons m-2 d-1; corresponding to more

than 6 h of photosynthetically saturating irradiance (>200 µmol

photons m-2 s-1) per day, under which conditions the leaves of all

plants should have been acclimated to a high light environment

(Cummings and Zimmerman, 2003).

Incubation measurements of leaf
photochemistry

Photosynthesis and respiration rates were measured using

polarographic O2 electrodes in temperature controlled, water-

jacketed glass metabolic incubation chambers (Rank Bros.,
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Cambridge, UK). Variable fluorescence was measured

simultaneously on each leaf using a Pulse Amplitude

Modulated (PAM) fluorometer (Mini PAM, Walz, Germany).

Incubation seawater pH (a proxy for dissolved inorganic carbon

(DIC) concentration) was measured using an epoxy mini-

electrode and pH meter (Cole-Parmer) calibrated with NBS

buffers. The lid of the incubation chamber was modified to

hold the pH electrode in the incubation water and the miniature

fiberoptic probe of the PAM device in close proximity to the leaf

surface. The chamber was continuously mixed by a magnetic

stirrer which homogenized the incubation medium and

provided turbulent flow to reduce boundary layer limitation of

gas exchange across the leaf surface. Continuous analog signals

from the three sensors were recorded digitally using custom

software written with LabView (2009 edition, National

Instruments). Voltage data were post processed into metabolic

rates using MATLAB R2014 (The MathWorks Inc.). A Kodak

slide projector fitted with a halogen (ELH) bulb provided
Frontiers in Plant Science 04
photosynthetically active radiation (PAR). The intensity of

PAR was adjusted with neutral density filters and calibrated

daily with a QSL 2100 scalar radiometer (Biospherical

Instruments Inc.).

Concentrations of CO2(aq) in the aquaria and metabolic

incubation chambers were determined from measured values

of pH, alkalinity, salinity and temperature using CO2SYS (Ver.

2.1; Lewis and Wallace 1998). Leaves, harvested from plants

grown at pH/CO2 treatments GpH6 ([CO2(aq)] = 2121 µM), GpH7

([CO2(aq)] = 371 µM) and GpH8 ([CO2(aq)] =55 µM), were used

to measure the photosynthetic response at pH/CO2(aq) levels of 6

(MpH6), 7 (MpH7) and 8 (MpH8). Seawater [DIC] and pH in the

incubation chambers were adjusted by bubbling with a gas

mixture of CO2, O2 and N2 that maintained [O2] at air

saturation (~215 µM). Seawater temperature was maintained

at 25°C by a circulating water bath. Leaves were cleaned of

epiphytes by gently scraping with a razor blade and kept in the

dark for 20 minutes before the incubation measurements. A
TABLE 1 List of symbols, their definitions, and dimensions.

Symbol Definition Dimensions

Chl-a Chlorophyll a µg cm-2 or mg g-1 FW

Chl-b Chlorophyll b µg cm-2 or mg g-1 FW

TChl Total Chlorophyll µg cm-2 or mg g-1 FW

TCar Total Carotenoid µg cm-2 or mg g-1 FW

FW Fresh Weight mg

LA Leaf Area cm2

AL(l) Leaf absorptance Dimensionless

D(l) Leaf absorbance Dimensionless

R(l) Leaf reflectance Dimensionless

aL*(l) Optical cross-section m2 g-1 Chl-a

l Wavelength nm

PAR Photosynthetically active radiation µmol photons s-1 m-2

PUR Photosynthetically usable radiation µmol photons s-1 m-2

E Incident irradiance µmol photons s-1 m-2

Ek Photosynthesis-saturating irradiance µmol photons s-1 m-2

Pg Gross photosynthesis µmol O2 s
-1 m-2 or µmol O2 hr

-1 mg-1 TChl

Pnet Net photosynthesis µmol O2 hr
-1 g-1 FW or µmol O2 hr

-1 mg-1 TChl

PE light-saturated rate of gross photosynthesis µmol O2 s
-1 m-2 or µmol O2 hr

-1 g-1 FW or µmol O2 hr
-1 mg-1 TChl

PT True photosynthesis

PR Photorespiration µmol O2 hr
-1 mg-1 TChl

RD Dark respiration µmol O2 hr
-1 g-1 FW

a Photosynthetic efficiency at light-limited region of PE curve µmol O2 µmol-1 photons

FO2 Quantum yield of oxygen evolution µmol O2 µmol-1 photons

Fm, Fm’ Maximum fluorescence from dark and light adapted leaf Dimensionless

F0, F0’ Minimum fluorescence from dark and light adapted leaf Dimensionless

Fv Variable fluorescence Dimensionless

FPSII Effective Quantum yield of fluorescence ([Fm’ - F’]/Fm’) Dimensionless

ETR Electron transport rate µmol electrons s-1 m-2

NPQ Nonphotochemical quenching ([Fm - Fm’]/Fm’) Dimensionless
Parenthetic notation (l) denotes wavelength dependence of the variable.
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separate three cm long pieces of leaf tissue, cut approximately

one cm above the meristem, was used during each ten min dark

(i.e., dark respiration) and ten min light (i.e., net photosynthesis)

measurement. The pigment content and optical properties of the

leaf tissues (Table 1) were measured after each incubation as

described by Celebi-Ergin et al. (2021).

The seawater used during all incubations was collected in

April 2014 from Owl’s Creek, the tidal estuary used as source

water for the experimental facility (Zimmerman et al., 2017).

This seawater stock, with salinity of 24 (PSS-78, (Lewis, 1980)

was filtered through 0.2 µm Nucleopore membrane filters and

stored under refrigeration in dark bottles until used in these

experiments. After incubations, alkalinity was determined on

aliquots of seawater taken from the chamber using an automated

potentiometric titrator (Metroohm). Table 2 summarizes

measured parameters of seawater used in metabolic

incubation chamber.
Determination of photochemical rates

Oxygen evolution rates of each tissue were separately

normalized to fresh weight, leaf area and total pigment

concentration to explore the effects of phenotypic differences

resulting from acclimation to different growth conditions.

Parameters of photosynthesis (P) vs Irradiance (E) curves were

estimated by fitting the data to a cumulative one-hit Poisson
Frontiers in Plant Science 05
model pioneered for photosynthesis by Webb et al. (1974):

Pnet  ¼  Pg�RD (1)

Pnet  ¼  ½ PE  ·   1� e�E= Ek
� �

��RD (2)

where Pnet was the measured rate of net photosynthesis and RD
was the measured rate of dark respiration, from which the gross

photosynthesis (Pg) was calculated according to Equation (1). Pg
was defined as a function of light, where PE represented the light-

saturated rate of gross photosynthesis that varied with [CO2]

and [HCO3
-] (sensu McPherson et al. (2015)). Ek was the

irradiance threshold for photosynthetic saturation. E was

separately defined as photosynthetically available radiation

(PAR =o700
400E½l�) and as photosynthetically utilized radiation

(PUR =o700
400½E(l) · A(l)�), where A(l) was the spectral leaf

absorptance that integrated the variability of light capture

efficiency due to changes in leaf optical properties and

pigment content/composition. The quantum yield of oxygen

evolution (FO2) at different irradiances (in units of mol O2 mol-1

absorbed photon) was calculated by FO2 = Pg/PUR. Maximum

quantum yield was calculated as Fmax = PE/Ek (PUR).

Although Equation (1) represents the typical method for

determining gross photosynthesis from measured values of Pnet
and RD, the model does not separately account for O2 consumed

by photorespiration in the chloroplast. It also assumes that the

Mehler Ascorbate Peroxidase pathway does not affect net O2
TABLE 2 Distribution of dissolved inorganic carbon and dissolved oxygen concentrations in seawater during the incubation measurements of net
photosynthesis at different light levels, including dark respiration measurements.

At the start of light measurements At the start of dark measurements

Target pH Growth pH 6 Growth pH 7 Growth pH 8 Growth pH 6 Growth pH 7 Growth pH 8

Sample Size 6 7 7 5 7 7 5

7 6 6 6 6 6 6

8 5 5 5 5 5 5

Average pH 6 6.09 ± 0.01 6.08 ± 0.01 6.05 ± 0.01 6.09 ± 0.01 6.08 ± 0.01 6.04 ± 0.01

7 6.91 ± 0.01 6.85 ± 0.02 6.87 ± 0.02 6.91 ± 0.01 6.84 ± 0.02 6.86 ± 0.02

8 7.94 ± 0.05 7.95 ± 0.01 7.94 ± 0.02 8.00 ± 0.04 7.98 ± 0.01 7.98 ± 0.02

Average [TCO2] (μmol/L) 6 3712 ± 28 3131 ± 18 3256 ± 48 3727 ± 27 3153 ± 20 3277 ± 49

7 2218 ± 9 1874 ± 12 1861 ± 10 2217 ± 10 1876 ± 10 1866 ± 11

8 1857 ± 15 1534 ± 3 1535 ± 5 1837 ± 14 1526 ± 4 1526 ± 5

Average [HCO-
3] (μmol/L) 6 1963 ± 0.1 1623 ± 0.0 1624 ± 0.1 1963 ± 0.1 1624 ± 0.0 1624 ± 0.1

7 1943 ± 0.7 1610 ± 0.7 1609 ± 0.7 1943 ± 0.7 1610 ± 0.6 1609 ± 0.7

8 1742 ± 21 1442 ± 4 1444 ± 7 1714 ± 20 1431 ± 5 1432 ± 7

Average [CO2] (μmol/L) 6 1748 ± 28 1506 ± 18 1631 ± 48 1762 ± 27 1528 ± 20 1652 ± 48

7 265 ± 8 258 ± 11 246 ± 10 264 ± 10 260 ± 10 250 ± 11

8 23 ± 3 18 ± 0.5 19 ± 0.9 19 ± 2 17 ± 0.5 17 ± 0.8

Average [O2] (μmol/L) 6 209.5 ± 3.1 215.0 ± 3.5 215.9 ± 2.0 212.6 ± 2.3 214.6 ± 3.0 216.0 ± 2.0

7 214.6 ± 3.0 218.4 ± 4.3 217.5 ± 3.1 215.7 ± 3.4 219.4 ± 3.3 216.3 ± 1.7

8 206.4 ± 2.4 215.8 ± 2.4 211.8 ± 2.7 212.2 ± 3.3 218.7 ± 1.6 215.4 ± 2.8
All measurements were conducted at 25°C using seawater with salinity of 24 ppt.
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exchange even though it may facilitate ATP generation and

electron flow, which might be detected by fluorescence

measurements (Larkum et al., 2006a). Following the principle

explained by Raghavendra (2000) gross photosynthesis (Pg) can

be detailed as the difference between true photosynthesis (PT)

and photorespiration (PR):

Pg  ¼  PT   – PR (3)

Under CO2-saturation (i.e., at low pH that increases CO2:O2

ratio in seawater, Table 2), PR should approach a minimum (~

0), so that Pg will be an approximate estimate of true

photosynthetic O2 production (PT). In this study, O2

production rates measured at pH 6 were assumed to

approximate the true photosynthesis (PT) for each growth

condition. Therefore, photorespiration was calculated by

subtracting the carbon limited Pg measured at pH > 6 from Pg
measured at pH 6:

PR ½pH>6�¼  Pg ½pH6��Pg ½pH>6� (4)

Pg ½pH>6�¼  ½ PE  ·   1� e�E= Ek
� �

� ½pH>6� (5)

Pg ½pH6�¼  ½ Pm  ·   1� e�E= Ek
� �

�½pH6� (6)

Thus, Pg approached PE when saturated by light and flow,

and it approached the true physiological capacity (Pm) when

saturated by CO2, light and flow. In this formulation, the limit of

Pm is set by availability of cellular components such as enzyme

and pigment concentrations that may change under different

growth conditions.

Pulsed Amplitude Modulation (PAM) fluorescence

measurements were analyzed following the calculations

outlined in Baker (2008). The maximum (Fm) and minimum

(F0) fluorescence emissions were measured in the dark after at

least 10 min of acclimation while simultaneously measuring

respiration. The maximum variable fluorescence yield (Fv = Fm -

F0) was used to quantify the maximum quantum yield of

fluorescence (Fv/Fm), which is a measure of maximum

efficiency at which absorbed light by photosystem II (PSII) can

be used for photochemistry. The maximum (F’m) and minimum

fluorescence (Ft) emissions induced by the short saturating pulse

of PAM were measured again in the light while simultaneously

measuring Pnet. Based on these emissions under the presence of

the actinic background light, the effective quantum yield of PSII

(FPSII), also known as photochemical quenching, was

determined as:

FPSII = F 0
m �Ft

� �
 = F 0

m (7)

FPSII provides an estimate of the quantum yield of linear

electron flow through PSII at a given irradiance. The other non-
Frontiers in Plant Science 06
radiative energy loss that quenches fluorescence, called Non-

Photochemical Quenching (NPQ), results from the dissipation

of excess excitation energy as heat via the Xanthophyll cycle.

NPQ was estimated as:

NPQ  ¼  ð Fm� F 0mÞ = F 0m (8)

For comparisons among the treatments and incubations,

NPQ and FPSII at different light levels were fitted to a four-

parameter sigmoid curve, which is commonly used for dose

response analysis (Motulsky and Christopoulos, 2004), with the

following formula:

NPQ  ¼  NPQmin þ 
ðNPQmaxþ NPQminÞ
1þ PUR=EC50ð Þ�H (9)

where the exponent H was Hill slope that controlled the

steepness of the dose-response curve. EC50 was the PUR level

required to provoke a response halfway between the baseline

and maximum responses. The threshold for NPQmax was

constrained to 10 based on literature values (Kalaji

et al., 2014).

The electron transport rate (ETR) was estimated from FPSII

as:

ETR ðmmol electrons m�2s�1Þ  ¼  PUR  ·  FII ·FPSII (10)

where FII was the fraction of PUR captured by PSII and its

light harvesting complexes (LHC). The typical value of FII for

Chlorophyta and seagrasses is about 0.5 (Figueroa et al., 2003;

Larkum et al., 2006a). Photosynthetic parameters of ETR curves

(i.e., ETRmax, aETR and Ek -ETR) were calculated by modifying the

model of O2 based P vs E. curves (Equation 2):

ETR  ¼  ETRmax  ·   1� e�E= Ek
� �

(11)

Linear electron flow through PSII is directly related to

photosynthetic oxygen production, therefore the gross

photosynthesis based on fluorescence measurements (Pg-ETR)

were estimated from ETR as:

Pg�ETR ðmmol O2 m
�2s�1Þ = ETR  · t   (12)

where t was the ratio of oxygen evolved per electron generated

at PSII. Since four stable charge separations are necessary to

generate one mole of O2 at PSII, t is equal to 0.25.
Statistical analysis

Effects of growth [CO2] on pigment content and optical

properties of leaves were analyzed by one-way Analysis of

Variance (ANOVA) followed by the Tukey multiple

comparison method when significant overall effects were

identified. Effects of growth [CO2] and measurement [CO2] on
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dark respiration rates, measured with the O2 evolution method,

were analyzed by Analysis of Covariance (ANCOVA).

O2 evolution and fluorescence models were implemented by

using the non-linear curve fitting tools in SigmaPlot (Systat

Software Inc., Version 13.0). This tool provided the mean

estimates of the model parameters with their error estimates

and significances using computational procedures described by

Draper and Smith (1981) and Zimmerman et al. (1987).

Additionally, analysis of variance for the regression models

were presented to account for the goodness of fit of the P vs E

curves for each experimental condition (Supplementary

Tables 1–3). Significant effects of measurement [CO2] and

growth [CO2] on model parameters obtained by non-linear

regression were analyzed by ANCOVA, with growth pH as the

primary (categorial) factor and measurement pH as the

continuous covariate.
Results

Photoacclimation to growth CO2

Pigment content and optical properties varied significantly

among the leaves grown in different [CO2] treatments (Table 3).

Both total chlorophyll and carotenoid content decreased with

increasing growth [CO2], while the molar ratio of Total Car :

Total Chl remained constant across CO2 treatments at about

0.27. The decrease in total chlorophyll resulted in an increased

optical cross section (aL*(l)) with growth [CO2], thereby

reducing the package effect that results in Chlorophyll self-

shading. Growth [CO2] increased the thickness of the

unpigmented mesophyll, thereby increasing the leaf biomass

per unit of surface area. These phenotypic responses, consistent

with the long term acclimation responses described by Celebi-

Ergin et al. (2021), had important consequences for the
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comparison of photosynthetic efficiencies when metabolic rates

were normalized to different leaf properties.
Light response curves of oxygen flux

Rates of dark respiration, whether normalized to biomass

(RD (FW)) or leaf area (RD (LA)), were not affected by growth

[CO2] or instantaneous variations of [CO2] within the metabolic

incubation chambers (Table 4). Therefore, the average rate of

dark respiration for all samples combined was 5.96 ± 0.31 µmol

O2 hr
-1 g-1 FW or 0.50 ± 0.03 µmol O2 m

-2 s-1. Dark respiration

rates were also independent of pH within the range examined

here, indicating no negative impact of changing ionic

composition on respiration.

In contrast, net O2 production rates increased with light and

incubation [CO2] for all plants, regardless of the CO2

environment in which they were grown (Figure 1). The

biomass specific rate of light-saturated photosynthesis (PE

(FW)) averaged 14.1 µmol O2 hr-1 g-1 FW at low incubation

[CO2] for all plants and increased as a function of incubation

[CO2] (Figure 1). However, PE (FW) of the plants grown under

ambient conditions (GpH8) was twice as sensitive to increasing

incubation [CO2] as plants grown under the highest CO2

enrichment (GpH6) (Table 5, 86.8 vs 33.5 µmol O2 hr
-1 g-1 FW

at MpH 6 respectively). This difference was associated with 2-fold

higher biomass specific pigment content of the plants grown

under ambient [CO2] (Table 3). Thus, low rates of oxygen

evolution by ambient plants in their natural low CO2

environment resulted mainly from photorespiration and not

the lack of photosynthetic capacity characterized by light

harvesting, electron transport and carbon fixation.

For all plants, increased incubation [CO2] also increased the

irradiance required to saturate photosynthetic oxygen

production (Ek (PAR) and Ek (PUR)); rather than changing the
TABLE 3 Pigment content and optical properties of leaves used in photosynthesis measurements.

Growth pH (Growth [CO2]) pH8 (55 µM) pH7 (371 µM) pH6 (2121 µM)

Sample Size (n) 16 18 18

FW per LA (mg cm-2) 25.8 ± 1.33 a 27.1 ± 0.92 a 36.0 ± 1.52 b

Total Chl per LA (μg Chl cm-2) 31.2 ± 1.22 a 27.0 ± 1.20 b 20.8 ± 0.86 c

Total Chl per FW (mg Chl g-1 FW) 1.25 ± 0.07 a 1.01 ± 0.05 b 0.59 ± 0.03 c

Total Car per LA (μg Car cm-2) 8.16 ± 0.28 a 7.25 ± 0.25 b 5.61 ± 0.17 c

Chl a:b 3.44 ± 0.04 a 3.73 ± 0.07 b 3.61 ± 0.04 a,b

TCar:TChl 0.26 ± 0.00 a 0.27 ± 0.00 a 0.27 ± 0.00 a

Absorptance at 550nm 0.38 ± 0.01 a 0.37 ± 0.01 a 0.29 ± 0.01 b

Absorptance at 680nm 0.75 ± 0.01 a,b 0.75 ± 0.01 a 0.73 ± 0.01 b

aL*(680) (m
2 g-1 Chl) 5.90 ± 0.33 a 6.73 ± 0.29 a 8.10 ± 0.24 b
Effects of growth pH on mean concentrations ( ± 1 SE) were analyzed by one-way ANOVA. Different letters represent significant differences among the growth pH for each parameter
compared by Tukey method at p< 0.05. FW, Fresh Weight; LA, Leaf Area; Chl, Chlorophyll; Car, Carotenoid.
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photosynthetic efficiency (a) within the light limited region of P

versus E response curves (Table 5 and Supplementary Table 1).

Overall, photoacclimation of eelgrass leaves to ocean

carbonation increased Ek (PUR) values from 17 to 44 and 48

µmol absorbed photon s-1 m-2 for pH 8 (55 µM CO2(aq)), pH 7

(371 µM CO2(aq)) and pH 6 (2121 µM CO2(aq)) respectively.

Chlorophyll specific rates of light-saturated photosynthesis

(PE (Chl)) were the same for all plants grown at different CO2

environments and produced an identical response to incubation

[CO2] (Figure 2). Consequently, the O2 production efficiency per

unit chlorophyll was not affected by the CO2 environment in

which the plants were grown (Table 5 and Supplementary

Table 2) and the stimulatory effect of [CO2] on O2 evolution

was instantaneous (Figure 3A). The most likely explanation for

this instantaneous response would be a reversible and light

dependent O2 consuming process involving the chloroplast,

such as photorespiration (PR), that is competitively inhibited

by increasing [CO2]. Therefore, for all plants grown under all

treatments, PE (Chl) rates at high incubation [CO2] (i.e., at MpH6)

were assumed to be the true physiological photosynthetic

capacity (Pm) under light, carbon and flow saturation. Based

on this assumption, photorespiration rates were quantified by

solving the Equation 4 with the chlorophyll specific gross

photosynthesis models (Figure 3B). Normalizing the models to

pigment, rather than biomass or area, eliminated the effect of

morphological differences among the plants on net

oxygen metabolism.

Like photosynthesis, photorespiration increased with light

under constant [CO2], but decreased with increasing incubation

[CO2], as carboxylation became increasingly favored over

oxygenation (Figure 3B). Predicted PR rates increased rapidly
Frontiers in Plant Science 08
with light to a maximum of 60 to 80% of Pm at low [CO2] (i.e.,

MpH8) (Figure 3C). When aqueous [CO2] was equal to aqueous

[O2] (at MpH7, Table 2), maximum PR rates were only 20% of

Pm, which is equivalent to the inherent carboxylation:

oxygenation ratio of Rubisco.

All plants reached the lowest gross photosynthesis to dark

respiration ratio (Pg : RD) of 2 at low incubation [CO2] when

light saturated (Figure 4A). This ratio increased instantaneously

when saturated with CO2 in the incubation medium, maximally

up to 12 for ambient plants (GpH8). However, the PE : RD ratio of

high CO2 grown plants peaked at 8 when saturated with CO2 in

the incubation medium, illustrating the consequence of pigment

acclimation on metabolic balance of plants grown in a high CO2

environment (Figure 4B, grey arrows). Having excess pigment

content in a CO2-limited environment (as observed in ambient

plants) did not improve the PE : RD under normal growth

conditions even though it allowed the instantaneous 6-fold

increase of PE : RD when incubation [CO2] increased. High

CO2 acclimated plants, on the other hand, maintained a 4-fold

higher PE : RD above ambient plants at their respective growth

[CO2] even though pigment content of the high CO2 plants

decreased by half.
Light response curves of variable
fluorescence

Maximum quantum yields of fluorescence by dark-adapted

leaves were above 0.7 regardless of incubation [CO2], indicating

leaves from all growth treatments were healthy during the

experiments (FPSII at PUR 0 µmol absorbed photon s-1 m-2,
TABLE 4 Dark respiration (RD) rates measured with O2 evolution method and estimated by non-linear model fit to P vs E curves.

Growth pH Measurement pH Measured Dark Respiration Averages
(µmol O2 hr

-1 g-1 FW)
Modeled Dark Respiration
(µmol O2 hr

-1 g-1 FW)
Modeled Dark Respira-
tion (µmol O2 s

-1 m-2)

6 6 4.61 ± 0.75 4.73 ± 1.34 0.45 ± 0.10

7 5.31 ± 0.62 5.50 ± 1.15 0.51 ± 0.08

8 5.84 ± 0.47 5.90 ± 0.63 0.69 ± 0.07

7 6 6.40 ± 1.14 6.90 ± 3.06 0.51 ± 0.12

7 6.73 ± 1.20 7.08 ± 3.02 0.53 ± 0.22

8 5.03 ± 0.91 5.04 ± 1.88 0.37 ± 0.12

8 6 6.52 ± 0.93 6.83 ± 2.06 0.46 ± 0.07

7 6.18 ± 0.75 6.71 ± 2.19 0.46 ± 0.14

8 7.29 ± 1.26 7.29 ± 1.05 0.56 ± 0.10

ANCOVA of Measured RD df SS MS F p

Growth pH 2 11.551 5.776 1.173 0.318

Measurement pH 1 0.531 0.531 0.108 0.744

Growth pH x Measurement pH 2 10.206 5.103 1.037 0.363

Residual 46 226.435 4.922 – –

Total 51 255.682 5.013 – –
Rates are normalized both to Fresh Weight (FW) and Leaf Area. Effects of measurement pH and growth pH on measured RD were analyzed by ANCOVA. Sample size for each condition is
given in Table 2.
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Figure 5). For all plants, effective quantum yields of fluorescence

(FPSII) decreased faster with increasing light when the

incubation [CO2] was low (MpH8). The decreased

photochemical yield resulted from rapid induction of non-

photochemical quenching (NPQ) when [CO2] was limited

under light saturation (Figure 6). Increasing the growth [CO2],

however, caused the light-dependent onset of NPQ to increase,

as the NPQ pathway saturated more quickly due the decreased

carotenoid content of leaves grown under high [CO2] (Table 3).

Under saturating irradiance (350 µmol absorbed photon s-1

m-2, Figure 6), NPQ values of ambient plants increased 5-fold as

incubation [CO2] became increasingly limiting. In contrast, the

plants grown under high [CO2] (GpH6) yielded the same light-
Frontiers in Plant Science 09
saturated NPQ of 2.5 regardless of incubation [CO2]. The

dynamic range of NPQ regulation in ambient grown plants in

response to instantaneous changes in [CO2] suggests

considerable tolerance for fluctuating environmental

conditions (Figure 6C).

The relation between quantum yield of fluorescence (FPSII)

and quantum yield of oxygen evolution (FO2) was nonlinear,

and their ratios were closest to the theoretical value of 8 only at

low light and high [CO2] conditions (Figure 7). For this ratio to

be higher than 8, either less than half of the photons are directed

to PSII (i.e., FII<0.5, Equation 10), and/or more than four

electrons are processed to evolve one mole of oxygen (i.e.,

t<0.25, Equation 12). Both outcomes highlight deviation from

linear electron flow. For ambient plants, FO2 decreased faster

than FPSII with increasing light resulting in a drastic increase in

FPSII:FO2, especially at their growth CO2 (GpH8), suggesting that

these plants were using an alternative pathway to maintain

electron flow without the production or consumption of O2.

Similar to net photosynthesis rates, electron transport rates

(ETR) of all plants increased with light and were lowest at low

incubation [CO2] (i.e., MpH8) (Figure 8 and Table 5). However,

the increase of ETRmax with incubation CO2 was not consistent

among the plants due to the non-monotonic response of FPSII

with incubation [CO2] (Figure 5), in agreement with the findings

by Celebi (2016). Only ETRmax of plants grown at GpH7

increased consistently with increasing incubation [CO2]. For

all incubation experiments, PUR levels required to saturate ETR

(Ek-ETR) were consistently higher than the Ek values required to

saturate O2 production (Table 5 and Supplementary Table 3).

For all plants, estimated gross photosynthesis based on ETR

were also higher than the gross photosynthesis measured by the

O2 evolution method (Figure 9). However, this overestimation

was not consistent among plants grown at different CO2

environments. The PE (LA) to ETRmax ratio was around 0.1 for

pH 6 and pH 8 plants when incubated at pH 6 and pH 8, instead

of the theoretical value (t) of 0.25 (Table 5).
Discussion

Long-term growth under high [CO2] produced a remarkable

combination of morphological and metabolic changes in

eelgrass. Although pigment content decreased in plants grown

at high CO2, leaf biomass increased as a direct result of the CO2-

stimulated increase in photosynthetic carbon gain. The

equivalent responses of chlorophyll normalized O2 production

rates to increased incubation [CO2], independent of the growth

CO2, allowed us to quantify the impact of [CO2] on

photorespiration in eelgrass because the instantaneous

difference in O2 production rates in CO2-saturated vs. CO2-

limited incubation media corresponded to the amount of O2

consumed in the photorespiratory pathway. Thus,

photosynthesis and photorespiration as a function of light for
B

C

A

FIGURE 1

Net photosynthesis of eelgrass leaves (biomass normalized) as a
function of irradiance. O2 production rates were measured at
different pH levels (red: pH6, black: pH7 and blue: pH8) using
leaves grown at pH6 (2121 µM CO2(aq)) (A), pH7 (371 µM CO2(aq))
(B) and ambient pH8 (55 µM CO2(aq)) (C). Curves were fit using
Equation (2).
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each growth condition were precisely predictable using the P

versus E curves, although the responses to incubation CO2

differed between biomass and pigment normalization due to

changes in leaf morphology. Presently, models of eelgrass

performance do not consider these long-term morphological

and metabolic acclimation responses (Zimmerman, 2003;

Zimmerman, 2006; Zimmerman et al., 2015). Thus, the quasi-

mechanistic model developed in this study permits integration

of the photosynthetic and morphological acclimation due to

ocean carbonation into seagrass productivity models, by

adjusting the limits of the photosynthetic parameters based on

substrate availability and physiological capacity.
Frontiers in Plant Science 10
Morphological acclimation and regulation of pigment

content, Rubisco activity, light capture and carbon fixation as

a function of CO2 availability have been previously observed in

freshwater angiosperms (Madsen et al., 1996). Increasing Pg : RD
due to the enhancing impact of [CO2] on PE was detected even in

short term (2-6 weeks) studies using temperate and tropical

seagrass species without any CO2 effect on pigment content

(Zimmerman et al., 1997; Ow et al., 2015). Long term studies,

moreover, reported significant increases in total shoot biomass,

carbon allocation to roots and rhizomes (blue carbon), shoot

survival and reproductive output by eelgrass in response to CO2

availability (Palacios and Zimmerman, 2007; Zimmerman et al.,
TABLE 5 Model estimates (mean ± 1 SE) of photosynthesis parameters generated by non-linear regression fit to the experimental data using
Equation (2) (N.S. stands for non-significant parameter estimate).

Model Estimates Measurement pH

Growth pH 6.0 7.0 8.0

PE (µmol O2 hr
-1 mg-1 Chl)

GpH x MpH: p=0.570
GpH: p=0.583
MpH: p=0.002

6 70.2 ± 4.3 55.2 ± 3.7 24.5 ± 2.1

7 68.0 ± 3.2 49.3 ± 3.1 12.5 ± 3.1

8 62.6 ± 2.4 44.9 ± 4.0 20.3 ± 2.4

PE (µmol O2 hr
-1 g-1 FW)

GpH x MpH: p=0.240
GpH: p=0.185
MpH: p=0.014

6 33.5 ± 2.8 40.0 ± 2.5 12.9 ± 1.1

7 67.4 ± 7.1 54.3 ± 6.5 12.1 ± 2.9

8 86.8 ± 4.7 62.1 ± 4.6 17.2 ± 1.7

PE (µmol O2 s
-1 m-2)

GpH x MpH: p=0.233
GpH: p=0.199
MpH: p=0.007

6 3.6 ± 0.2 3.5 ± 0.2 1.5 ± 0.1

7 5.8 ± 0.3 4.3 ± 0.5 0.9 ± 0.2

8 5.8 ± 0.2 4.3 ± 0.3 1.5 ± 0.2

ETRmax (µmol Electron s-1 m-2)
GpH x MpH: p=0.573
GpH: p=0.482
MpH: p=0.119

6 35.3 ± 0.4 41.0 ± 3.3 22.4 ± 0.5

7 93.1 ± 2.6 68.3 ± 4.2 32.4 ± 1.1

8 58.4 ± 5.8 82.2 ± 5.5 22.8 ± 0.7

aETR (µmol Electron
µmol-1 absorbed Photon)
GpH x MpH: p=0.696
GpH: p=0.735
MpH: p=0.257

6 0.45 ± 0.01 0.50 ± 0.07 0.52 ± 0.03

7 0.42 ± 0.01 0.48 ± 0.04 0.44 ± 0.04

8 0.50 ± 0.08 0.46 ± 0.03 0.52 ± 0.04

Fmax (µmol O2 µmol-1 absorbed Photon)
GpH x MpH: p=0.263
GpH: p=0.314
MpH: p=0.100

6 0.077 ± 0.01 0.084 ± 0.01 0.107 ± 0.03

7 0.079 ± 0.01 0.079 ± 0.02 0.14 ± 0.24

8 0.083 ± 0.01 0.074 ± 0.01 0.081 ± 0.03

Ek (µmol absorbed photon s-1 m-2)
from ‘PG per Chl vs PUR’
GpH x MpH: p=0.391
GpH: p=0.348
MpH: p=0.006

6 47.5 ± 7.0 36.4 ± 6.0 14.5 ± 4.9

7 64.2 ± 7.4 43.9 ± 6.9 4.7 ± 15.8

8 68.6 ± 7.2 57.1 ± 13.3 17.4 ± 7.1

Ek (µmol photon s-1 m-2)
from ‘PG per FW vs PAR’
GpH x MpH: p=0.523
GpH: p=0.501
MpH: p=0.046

6 65.0 ± 14.5 94.7 ± 14.8 28.4 ± 8.6

7 94.0 ± 24.2 85.3 ± 25.1 11.6 ± 23.5

8 124.9 ± 18.6 83.9 ± 16.9 18.3 ± 8.7

Ek (µmol absorbed photon s-1 m-2)
from ‘ETR vs PUR’
GpH x MpH: p=0.560
GpH: p=0.469
MpH: p=0.117

6 78.5 ± 2.0 82.2 ± 15.6 43.1 ± 2.9

7 220.1 ± 10.3 142.6 ± 19.0 72.8 ± 7.3

8 117.5 ± 27.8 180.1 ± 22.9 44.2 ± 3.8
fro
Significant effects of measurement pH (MpH) and growth pH (GpH) on mean estimates were analyzed by ANCOVA.
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2017). Despite the decreases in pigment content and leaf

absorptance observed here, plants grown at high CO2 were

able to maintain higher Pg : RD ratios than plants grown under

ambient CO2; indicating a strong coupling between the

regulation of photosynthetic structure and metabolic carbon

demands. This coupling between photosynthetic regulation and

growth might be poor for organisms that undergo photodamage

because photosynthesis might accommodate the biochemical

costs associated with protection and recovery rather than

fueling the energy towards growth (Barra et al., 2014). On the

other hand, the eelgrass used in these experiments show no sign

of photodamage, either in the growth aquaria or in laboratory
Frontiers in Plant Science 11
incubations even when photosynthesis was carbon limited but

light saturated.

When measured at low [CO2], plants grown under ambient

CO2 had the same photosynthetic O2 production as the plants

grown at high [CO2]. These same photosynthetic rates

highlighted the apparent lack of carbon concentrating

mechanisms inducible by low CO2 availability in eelgrass, in

contrast with marine algae and cyanobacteria that are capable of

upregulating their carbon concentrating mechanisms via e.g.,

generation of pyrenoids, carboxysomes and periplasmic

carbonic anhydrases when CO2 availability becomes limiting

(Björk et al., 1993; Raghavendra, 2000; Falkowski and Raven,

2007; Meyer et al., 2017). This was also consistent with the
B

C
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FIGURE 2

Net photosynthesis of eelgrass leaves (Chlorophyll normalized)
as a function of absorbed irradiance. O2 production rates were
measured at different pH levels (red: pH6, black: pH7 and blue:
pH8) using leaves grown at pH6 (2121 µM CO2(aq)) (A), pH7 (371
µM CO2(aq)) (B) and ambient pH8 (55 µM CO2(aq)) (C). Curves
were fit using Equation (2).
B
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FIGURE 3

Modeled gross photosynthesis (A) and photorespiration (B, C) of
eelgrass leaves as a function of absorbed irradiance. Colors
represent different pH/CO2 levels at which the measurements
(MpH) were performed; line styles represent the different pH/CO2

levels at which the plants were grown (GpH). Photorespiration at
MpH6 were zero.
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B
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FIGURE 4

Modeled ratio of gross photosynthesis to dark respiration as a function of absorbed irradiance (A) and as a function of Chlorophyll content at
saturating irradiances (B). Colors represent different pH/CO2 levels at which the measurements (MpH) were performed; line styles and symbols
(▲, at pH6 ◼ at pH7, ● at ambient pH) represent the different pH/CO2 levels at which the plants were grown (GpH). (B) Ellipses highlight when
plants from different treatments were incubated at their corresponding growth pH/CO2. Gray arrows show the trajectory of PE : RD as a result of
phenotypic acclimation to the increasing CO2 environment.
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limited sensitivity of eelgrass photosynthesis to the aqueous

presence of acetazolamide, an inhibitor of periplasmic

carbonic anhydrase (McPherson et al. (2015) and Celebi-Ergin

- unpublished data). Seagrasses living in shallow estuarine

environments, like the Chesapeake Bay eelgrass used in this

study, are subject to highly variable CO2/pH levels daily and

seasonally, which might explain the unresponsiveness of CCMs

for ambient plants (Buapet et al., 2013a; Duarte et al., 2013;

Ruesink et al., 2015; Zimmerman et al., 2017; Cyronak et al.,

2018). Similarly, all plants had the same PE (Chl) when measured

at saturating [CO2] due to minimized PR, indicating all plants

approached the same physiological oxygen production capacity

per available photosynthetic apparatus (i.e., Pm (Chl) was
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constant across all treatments). Therefore, the difference in PE
: RD among growth [CO2] treatments when all were incubated at

high [CO2] resulted from the downregulation of light harvesting

components by plants grown in the high CO2 environment.

Despite phenotypic acclimation across the CO2 gradient, the

maximum photosynthetic efficiency (Fmax) remained constant

for all plants (~0.08 mol O2 mol-1 absorbed photon) but

photosynthesis-saturating light levels (Ek) increased, as was

predicted by the model of McPherson et al. (2015).

Photosynthetic efficiency within and among seagrass species

vary with efficiency of light absorption and the subsequent

conversion of that energy into carbon assimilation (Ralph

et al., 2007). Although the observed values of a in this study
B

C
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FIGURE 5

PAM fluorescence parameters of eelgrass leaves as a function of
absorbed irradiance. PAM fluorescence measurements were
performed at different pH/CO2 levels (red: pH6, black: pH7, blue:
pH8) using leaves grown at pH6 (2121 µM CO2(aq)) (A), pH7 (371
µM CO2(aq)) (B) and ambient pH8 (55 µM CO2(aq)) (C). Curves
were fit using Equation (9).
B

C

A

FIGURE 6

PAM fluorescence parameters of eelgrass leaves as a function of
absorbed irradiance. PAM fluorescence measurements were
performed at different pH/CO2 levels (red: pH6, black: pH7, blue:
pH8) using leaves grown at pH6 (2121 µM CO2(aq)) (A), pH7 (371
µM CO2(aq)) (B) and ambient pH8 (55 µM CO2(aq)) (C). Curves
were fit using Equation (9).
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FIGURE 7

Ratio of the quantum yield of fluorescence (ФPSII) to the quantum yield of oxygen (ФO2) as a function of light and incubation pH/CO2. O2

production and fluorescence were measured simultaneously at different pH levels using eelgrass leaves grown at different CO2 treatments.
Yields were calculated using PUR. Growth specific 3D relationships, at pH6 (2121 µM CO2(aq)) (A) and ambient pH8 (55 µM CO2(aq)) (B), were
generated by the combination of non-linear and linear regression fits. First, the ФPSII/ФO2 ratio as a function of PUR were described by the
exponential rise to maximum models separately for each incubation pH/CO2. Parameter estimates of these non-linear regression models were
fitted as a function of incubation pH using linear regression.
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were in agreement with previous estimates for eelgrass (Frost-

Christensen and Sand-Jensen, 1992), constant a across different

CO2 regimes represents an interesting contrast to that observed

in terrestrial C3 plants in which a increases with [CO2]

availability (Raghavendra, 2000). This difference between

responses of aquatic and terrestrial plants may result because

CO2 responses are coupled to water stress in terrestrial plants

but not in aquatic plants. The increased Ek and PE values for high

CO2 acclimated plants will decrease the estimates of Hsat (i.e.,

average daily period of PE) required to maintain positive carbon

balance for the whole plant. The Hsat requirement is a useful

modeling tool in predicting the depth distribution of eelgrass in
Frontiers in Plant Science 15
variable light environments (Dennison, 1987; Zimmerman et al.,

1991; Zimmerman et al., 1994; Zimmerman et al., 1995).

A strong correlation between diurnal NPQ cycle (i.e.,

xanthophyll cycle) and high light exposure has been confirmed

for eelgrass to avoid photodamage under fluctuating light

environments (Ralph et al., 2002). High light acclimated eelgrass

leaves have higher NPQ activity, and higher photosynthetic

capacity, than low light acclimated leaves (Ralph and

Gademann, 2005). Here, we demonstrated a similar effect of

[CO2] availability on NPQ activity. Under ambient CO2

concentrations, the onset of photosynthesis CO2 limitation (Ek)
B

C

A

FIGURE 8

Electron transport rates of eelgrass leaves as a function of
absorbed irradiance. PAM measurements were performed at
different pH/CO2 levels (red: pH6, black: pH7 and blue: pH8)
using leaves grown at pH6 (2121 µM CO2(aq)) (A), pH7 (371 µM
CO2(aq)) (B) and ambient pH8 (55 µM CO2(aq)) (C). Curves were fit
using Equation (11).
B

C

A

FIGURE 9

Modeled gross photosynthesis of eelgrass leaves as a function of
absorbed irradiance for plants growing at pH6 (2121 mM CO2(aq))
(A), pH7 (371 mM CO2(aq)) (B) and ambient pH8 (55 mM CO2(aq))
(C). Solid lines are calculated from leaf area normalized O2

production rates (Equation 1) and dashed lines are estimated
from ETR measurements (Equation 12). Colors represent
incubation pH/CO2 levels. Green dot-dashed lines represent the
theoretical O2 production per absorbed photon under non-
limiting environmental conditions.
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occurred at lower irradiance, accelerating the diversion of excess

photon absorption to NPQ, likely using the xanthophyll cycle as a

photoprotective mechanism to prevent photoinhibition. The high

CO2 incubations reduced this carbon limitation and increased the

Ek, consequently reducing NPQ. Due to increased Ek, the same

light environment became less damaging at high CO2, which may

explain the reduction in both photosynthetic and photoprotective

pigments observed in response to growth CO2. Thus, by reducing

CO2 limitation of Rubisco, ocean carbonation should also reduce

the vulnerability of eelgrass to excess reactive oxygen species

(ROS) and therefore the need for photoprotection.

The simultaneous measurements of variable fluorescence, and

O2 flux performed here yielded quantitative estimates of changes

in photoprotective pathways of eelgrass acclimated to different

CO2 environments. The difference between the theoretical O2

evolution (i.e., the linear increase of O2 with light) and the ETR

estimates of gross photosynthesis (Pg-ETR) was most pronounced

for plants grown at high CO2, accounting for the absorbed

photons that did not contribute to the electron transport

pathway (not exciting electrons at PSII), but explained by

quenching pathways, such as fluorescence and NPQ. This trend

was consistent with their lower area-specific O2 production rates

at high CO2 incubations when compared to pH7 and ambient pH

grown plants. These plants downregulated their pigment content

but increased the light-dependent NPQ at lower irradiances even

at high incubation [CO2]. This may indicate that phenotypic

acclimation to ocean carbonation by downregulating the

photosynthetic apparatus reduces the role of photorespiration

but increases the role of NPQ in photoprotection.

On the other hand, as observed in all treatments, the

difference between the ETR estimated gross photosynthesis

(Pg-ETR) and the gross photosynthesis measured by oxygen

production (Pg) may result from inaccurate assumptions of Fii
and/or t (Equation 12). In theory, 8 photons absorbed

equivalently both by PSI and PSII (Fii= 0.5) excites a total of 4

electrons producing 1 mole of O2 (t =0.25). This equilibrium of

linear electron flow is valid when there is no limitation of

resources such as CO2 and/or accumulation of byproducts

such as reducing equivalents and ROS (Scheibe et al., 2005;

Dietz and Pfannschmidt, 2011; Pfannschmidt and Yang, 2012).

Under limiting conditions, this balance shifts towards pathways

that ensure the optimal redox state of the chloroplast resulting in

altered photon: electron: O2 ratios (Foyer et al., 2012).

Following the linear assumption that 4 electrons produce 1 O2

(t = 0.25) resulted in overestimation of the PGETR in all

treatments. Since the molecular chemistry of water splitting at

PSII is well-known, t can only be reduced in an apparent sense.

This apparent ratio can result from the excitation of four electrons

(as detected with PAM) either without producing O2, indicating

cyclic electron flow around PSII, or consumption of O2 in the

chloroplast that would remain undetected by the gas exchange

method (Foyer et al., 2009; Ananyev et al., 2017). Two possible

pathways to explain a reduction in t due to O2 consumption are
Frontiers in Plant Science 16
(i) the Mehler reaction and (ii) photorespiration. The Mehler

reaction increases the pH gradient that may induce NPQ

(Demmig-Adams and Adams, 1996; Kanazawa and Kramer,

2002). However, in this study NPQ induction did not happen

until FPSII values fell below 0.6 while O2 yield continuously

decreased. Therefore, the observed nonlinearity between

quantum yield of fluorescence and quantum yield of oxygen

most likely resulted from O2 consumption via photorespiration,

which probably represents the primary pathway to remove excess

O2 buildup and use the ATP energy from light reactions for this

purpose. NPQ was then triggered when photorespiration is

incapable of consuming enough ATP to lower the pH gradient

forming across lumen at very high irradiances.

Other pathways that keep the electron flow continuous

without contributing to CO2 assimilation are the malate valve

and the cyclic electron flow around PSI, which triggers NPQ by

generating a pH gradient (Munekage et al., 2004; Johnson, 2005;

Miyake, 2010). If PSI cyclic electron flow plays an important

role, then the assumption of half of the absorbed photons going

to PSII (e.g., Fii=0.5) would be inaccurate. Although PAM

measurements are easily made under field conditions

(including underwater) and provide non-intrusive information

about the photoprotection of eelgrass through NPQ, the

fluorescence measurements with PAM overestimate Pg-ETR and

therefore are not equivalent to true carbon assimilation.

Fluorescence measurements may account for the number of

absorbed photons used in electron excitation but not necessarily

towards the rates of oxygen production/consumption or carbon

assimilation, especially when alternative electron sinks are

available (Beer et al., 1998). Still, by having quantified the ratio

of FPSII to FO2 as a function of light and carbon availability in

response to acclimation to ocean carbonation, the alternative

electron pathways can be accounted for in the future estimation

of photosynthesis in eelgrass.

To conclude, photorespiration likely provides an important

metabolic clutch to protect the photochemical pathway in CO2-

limited eelgrass by maintaining electron flow to prevent the

inhibitory damage to photosystems due to light saturation when

carbon assimilation is limited by CO2 supply. In addition to

providing a photoprotective role, photorespiration could serve

multiple purposes by connecting different metabolic pathways

that allow instantaneous energy and reductant modulation under

fluctuating environmental conditions. Further, photorespiration

may provide a carbon concentrating mechanism via recycling of

photorespired CO2 and removing excess intracellular O2.

Therefore, even though carbon limitation causes eelgrass

photosynthesis to saturate at relatively low light levels in the

modern ocean, longer daily periods of saturating irradiances

might be required to keep the photosynthetic apparatus running

to produce ATP to support photorespiration. Consequently,

understanding photoprotection mechanisms employed by these

remarkable plants that are permanently rooted in highly variable

shallow-water environments, becomes important when high water
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column productivity causes [O2] to rise and [CO2] to fall just as

daily irradiances begin to peak. More importantly, this study

demonstrated that acclimation of photoprotective mechanisms in

response to CO2 availability accounted for the previously reported

physiological acclimations of enhanced growth and survival of this

species under ocean acidification scenarios.
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